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Abstract— With the rising prominence of WiFi in common
spaces, efforts have been made in the robotics community
to take advantage of this fact by incorporating WiFi signal
measurements in indoor SLAM (Simultaneous Localization
and Mapping) systems. SLAM is essential in a wide range of
applications, especially in the control of autonomous robots.
This paper describes recent work in the development of WiFi-
based localization and addresses the challenges currently faced
in achieving WiFi-based geometric mapping. Inspired by the
field of research into k-visibility, this paper presents the concept
of inverse k-visibility and proposes a novel algorithm that allows
robots to build a map of the free space of an unknown
environment, essential for planning, navigation, and avoiding
obstacles. Experiments performed in simulated and real-world
environments demonstrate the effectiveness of the proposed
algorithm.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a long-
studied topic central to the control of autonomous robots.
Much of what has been achieved thus far has focused on the
use of exteroceptive sensors such as camera, laser-ranger, or
ultrasound, which acquire information from the surrounding
environment to generate map estimations [1]. However, due
to extraneous factors or physical limitations presented in
some scenarios, these methods may not always be suitable.
In such cases, one might turn to alternative methods that can
attain similar mapping results.

With the notable rise of WiFi networks becoming a staple
in indoor buildings and public spaces, achieving SLAM
using WiFi signal strength measurements, known as received
signal strength indicator (RSSI), has become a prime focus
in recent literature. Aside from being highly common, WiFi
provides the advantage of being well-suited to environments
where camera/laser/ultrasound sensors might fall short, such
as in scenarios where there are privacy concerns or in
badly illuminated environments [2]. Recent advancements
in this approach, such as WiFiSLAM [3], have mostly been
focused on WiFi-based localization, or possibly estimating
the position of the WiFi routers. It has also been shown
that by relying on crowdsourcing [4], mapping using WiFi
is possible, but this approach requires many Wi-Fi receivers.
Additionally, RSSI, used in most of the algorithms, is known
to be fluctuating and unreliable, particularly in dynamic
environments [5]. Therefore, building a complete WiFi-based
SLAM solution remains a challenge, primarily because it
is a difficult task to extract the geometric shape of the
environment from WiFi data.
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Fig. 1. Demonstration of k-visibility where k = 0 (red), k = 1 (green),
k = 2 (blue) and k = 3 (yellow) are shown. k-visibility refers to the
number of times a signal from a reference point (e.g. a router, shown in
dark blue) passes through a wall/obstacle when making a straight-line path
to a desired location.

In this paper, we use concepts from the field of k-
visibility [6], as shown in Fig. 1, to devise a novel ap-
proach, coined Structure from WiFi (SfW), to generate a
2D geometric map of an indoor space using only WiFi
signal-strength measurements and trajectory information.
We propose the inverse k-visibility algorithm, which uses
probabilistic modeling of known k-visibility information to
estimate an explicit model of the environment.

The main contribution of the work is bringing k-visibility
concepts into robotics mapping problems and proposing a
mapping algorithm that maps most of the free space using
WiFi RSSI signals without relying on sensors such as lidar,
radar, or camera. Mapping free space is significant, as it
allows the robots to plan paths without colliding with obsta-
cles, essential for the control of many autonomous systems.
Evaluation of the work in simulation and real-world settings
demonstrates the significance of the method. See the videos
on the website of the project1.

The rest of this work is organized as follows: Sec. II
presents the literature review. Sec. III describes the back-
ground material. Sec. IV proposes the inverse k-visibility
algorithm. Sec. V extends the inverse k-visibility algorithm
to real-world situations where sparse information is available.
Sec. VI presents the experimental results. Finally, Sec. VII
discusses future works and concludes the paper.

1https://sites.google.com/view/structure-from-wifi/home
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II. LITERATURE REVIEW

The following section summarizes recent advances in
WiFi-only SLAM systems and wireless-based mapping,
making note of the difficulties being faced in creating an
explicit map of the environment using signal-strength mea-
surements.

The utilization of WiFi-based systems to achieve localiza-
tion has seen widespread adoption in recent years. Ferris et
al. [3] achieved localization by mapping high-dimensional
signal strength measurements into a 2D latent space, solving
SLAM using a technique known as Gaussian process latent
variable modeling (GP-LVM). Other works adopt a similar
approach, including [7], [8]. Graph-based approaches are
also used for SLAM, such as [5], [9]–[11]. Improving WiFi
observation models can also lead to improved mappings,
such as the works described in [2], [12].

Several works have taken advantage of sensors inherent to
smartphones and have attempted to infer the floor plan of an
indoor environment via a crowdsensing approach [4]. Much
of the research in this field has approached mapping using
inertial sensors supported by WiFi signal strength measure-
ments, both of which are readily available in commercial
smartphones. Recent papers include [13]–[20]. The benefit
of these works is limited to the fact that they only achieve
the creation of “traversable maps”, which can only depict
traversable areas in the environment, whereas occupied areas
remain unknown. All such works mentioned have relied
on crowdsourced and/or public data, which are not always
available and thus limit the scope of application.

With directional antennas, Gonzalez-Ruiz and
Mostofi [21] presented a framework for creating a non-
invasive occupancy grid map using wireless measurements,
achieving a 2D representation of an environment using
a coordinated robot setup, where information is obtained
through walls or other obstacles. Other works looking into
the closely-related field of Ultra Wide-band (UWB) SLAM
have used similar directional antenna techniques based on
UWB signal path propagation modeling [22], [23].

III. BACKGROUND: k-VISIBILITY

Here, the concept of k-visibility, which shall be exten-
sively used in the following work, will be introduced as an
alternative perspective of WiFi systems.

The field of research into k-visibility, first introduced as
the modem illumination problem [24], concerns itself with
WiFi-based systems from the perspective of finding the
amount of area that can be visualized from router points
located on the vertices of a polygon. It is an extension of
the problem of visibility, which attempts to find the region
visible to a point in a polygon [6]. Two points p and q on a
simple polygon P are said to be mutually visible if the line
segment joining p and q does not cross the exterior of P [6].
The visibility concept arose from the Art Gallery Problem
proposed by Victor Klee in 1973 [25], which seeks to find
the number of guards sufficient to cover the interior of an
n-wall art gallery room. The region visible to a certain point
is a visibility polygon [6]. On the other hand, p and q are

Fig. 2. Diagram demonstrating the ray-drawing principle upon which the
inverse k-visibility algorithm is based. The wall is located at the exact
coincidence of two consecutive k-value regions along a ray cast from the
router point. Note that only the region of interest in the k = 1 region is
shown.

said to be k-visible to one another if the line segment joining
them crosses the exterior of P at most k times [6]. The k-
visible region can then be found for a given value of k from
a certain vantage point p. Fig. 1 shows a map with various k-
visibility values from the perspective of a point highlighted in
dark blue (inside the red region). All red cells are 0-visible,
green cells are 1-visible, blue cells are 2-visible, and yellow
cells are 3-visible. The vantage point p is denoted as a k-
transmitter, and all k-visible polygons can be found for every
value {0, 1, .., k} [6]. Various methods exist for determining
k-visibility plots with different complexity level [26]–[28].

IV. DENSE INVERSE k-VISIBILITY

In this section, we propose the dense inverse k-visibility
concept. The main principle behind the algorithm is first
explained. Then, in the next section, we extend this concept
to sparse k-visibility with its application in robotics.

In k-visibility related works, the goal is to assign k-values
from a known k-transmitter, or router point, by casting rays
in various directions. With the map (represented as a simple
polygon) being known, one looks to obstructions encountered
along each ray being cast from the router point and assigns k-
value regions based on these obstructions. It can be observed
that where there are consecutive k-value regions along a
ray cast from the transmitter point, a wall is located at the
coincident point between these two regions. The inverse k-
visibility algorithm is based upon this concept: instead of
having a map of the environment as an input, one uses known
k-value regions to infer the map by casting rays from the
router point and observing for consecutive k-value regions
along the ray. Where these are found, a wall location can be
marked. Fig. 2 demonstrates this ray drawing principle.

If the full k-visibility plot is given, one can easily see the
border between consecutive k-value regions. This informa-
tion can be used in a “full” inverse k-visibility algorithm
to generate a map of the environment. Such an algorithm
would take as an input a colour map of all superimposed
k-visibility plots for all values k corresponding to a given
environment and router point location, as in Fig. 1. It can



be seen that walls are located on the direct border between
consecutive ki−1ki portions of the k-visible map. The full
inverse k-visibility algorithm functions by detecting shared
pixels among these successive k-value areas and writing
them to a separate image, creating a black-and-white outline
of the actual environment.

V. SPARSE INVERSE k-VISIBILITY

In practical applications, determining the full k-visibility
plot for every k value is not feasible. Thus, we explore the
partial recreation of an environment using sparse k values,
an approach we call sparse inverse k-visibility. Similar to
the full inverse k-visibility algorithm, sparse inverse k-
visibility involves relating coordinates of known consecutive
k value coordinates located along the same ray cast from
the router point, whose location is assumed to be known.
The locations can be determined via dead reckoning using
inertial measurement units and wheel encoders (if available
on mobile robots).

Here, an overview of the algorithm is described. Consider
an indoor environment whose router point location is known;
the coordinates are denoted as R = (rx, ry). A user or
mobile robot walks along a path throughout this environment,
moving from room to room. Assume that the set of (x, y)
coordinates of the trajectory taken across the map can also
be known, and let T = [T1, T2, ..., Tmax] describe this set
of coordinates, where Ti represents the (x, y) position of a
point along the ith coordinate in the trajectory array. Assume
further that the set K of k−values corresponding to each pair
of trajectory coordinates can also be known, where k is an
integer representing the number of obstacles that lie between
a given point on the trajectory Ti and the router R.

The probabilistic sparse inverse k-visibility algorithm then
works in three parts:

1) Extracting k-values: The trajectory is sub-divided ac-
cording to associated k-values to coordinates (See
Sec. V-A);

2) Mapping Free Space: Free space is determined (See
Sec. V-B);

3) Mapping Occupied Space: the occupied pixels are
probabilistically determined using a three-step process
of ray drawing, ray segmentation, and Gaussian prob-
ability assignment (See Sec. V-C).

The algorithm outlined herein is based on the principle of
drawing rays from R to a coordinate being analyzed along
the trajectory Ti, which has a corresponding k-value ki. The
environment is analyzed in a grid map format, emulating an
occupancy grid map style of mapping. In an occupancy grid
map, every pixel (cell) is either unknown, free, or occupied.
See [1] for more information. Based on the principles of k-
visibility, the ray RTi is bound to have a ki number of walls
along this line. Walls are taken to be distinct cells in the grid
map that lie along the RTi line. This concept is shown in
Fig 3.

Fig. 3. Ray-drawing for an arbitrary trajectory coordinate Ti which has an
associated k-value ki. By definition of k-visibility, the ray RTi must have
a ki number of walls along the ray.

A. Extracting k-values

The work done by Fafoutis et al. [29] in creating a wall
prediction model allows for the quantifying of k-values in an
experimental scenario corresponding to the trajectory plotted.
The authors sought to use RSSI measurements to predict the
number of walls between a wearable sensor and an access
point. The RSSI-based wall prediction function transforms an
RSSI measurement at a given point, PRSSI , to the predicted
number of walls to the access point for an upper limit of K
number of walls based on a sequence of RSSI thresholds,
t1, t2, ..., tK . The function is as follows [29].

f(PRSSI) =



0 PRSSI > t1

1 t1 ≥ PRSSI > t2

...

K − 1 tK−1 ≥ PRSSI > tK

K tK ≥ PRSSI

(1)

Additionally, the RSSI signal cannot be amplified through a
wall. Thus, the authors show the following relation:

tK < tK−1 : k ∈ [1,K] (2)

For the purposes of Structure from Wifi mapping, the K-
Means algorithm presented by the authors is most suitable,
given that it is unsupervised and does not require labeled
data.

For an upper limit of K walls, the K-Means algorithm
presented by Fafoutis et al. outputs K + 1 centroids, sorted
in descending order: C0, C1, ..., CK . Thus, the authors define
the RSSI thresholds as follows.

tK =
Ck−1 + Ck

2
: k ∈ [1,K] (3)

We use these equations in conducting an experimental trial
of the sparse inverse k-visibility algorithm.

In the real world, RSSI signals fluctuate and are noisy. To
reduce the noise of the RSSI values and eliminate the RSSI
fluctuations, a sliding window filter is applied to the RSSI
values along the trajectory.

B. Mapping Free Space

To map the free space, the following geometric rules, as
shown in Fig. 4, are utilized. We start with the assumption
that the pixels of the map are unknown. The trajectory is first



Fig. 4. Visual demonstration of the geometric rules with k = 0 and k = 1
area. Rule 1 was excluded from the legend for clear visualization as it shows
the trajectory of the robot.

segmented based on the k-values, as described in Sec. V-A.
Then, the following rules are implemented to determine the
free space:
Rule 1: The robot’s trajectory is considered to be free unless
it hits an obstacle, which can be detected by contact sensors.
Rule 2:: If k = 0, pixels on the line segment between the
router and the robot are free space.
Rule 3:: If k ≥ 1, there are walls between the router and the
robot.
Rule 4:: for any line emanating from a router, if the line
intersects the robot trajectory at two points with the same
k-values, the pixel residing on the line that is between the
two points belongs to the free space.

C. Mapping Occupied Space

Similar to the free space, segmenting the trajectory based
on k-value and continuity is the first step in the algorithm
for finding occupied space. The algorithm groups trajectory
coordinates according to their corresponding k-values. A
probabilistic model is then applied to identify wall and
obstacles. Consider the ray RTi drawn in Fig 5, where
the associated k-value for the trajectory position Ki = 1.
By definition of k-visibility, it is known that there exists
Ki number of wall cells along RTi, where, in this case,
exactly one wall cell will lie on the line. With no other
known information, an assumption one can make about
the location of this wall cell is that it is situated at the
midpoint of RTi. The longer the length of the ray, the
less reasonable this assumption becomes. We represent this
certainty probabilistically as:

µj =
e−( 1

M )2dj
L

, (4)

where µj is the probability of the jth cell in the ray being a
wall, M is the number of intermediate cells along the ray, L
is the length of the ray, and dj is the distance from the jth

cell to the midpoint of the ray. The intermediate cells of a
ray refer to all cells along the ray, excluding the endpoints.
The prediction made by drawing ray RTi in Fig. 5 may
be improved by updating the ray endpoints such that the
result is a shorter line, and consequently a smaller number of

Fig. 5. Initial wall estimate along a ray (left). Improved wall estimate
along a ray after updating the lower and upper endpoints (right).

Fig. 6. Assigning of probability distributions based on differences in k-
values among ray subsegments.

intermediate cells, which improves the probability estimate.
To start with, the lower endpoint of a ray, denoted as elower,
is the router point R. Similarly, the upper endpoint, denoted
as eupper, is the trajectory point Ti. One notices that, in
some instances, the ray may cross other points along the
trajectory. These serve as the updated endpoints of the ray
RTi, as seen in Fig. 5. The lower endpoint is updated if the
other trajectory point encountered Tj has Kj = 0; otherwise,
the upper endpoint is updated if Kj ≥ 1.

The above can be generalized for an algorithm that ana-
lyzes k-values that may be greater than 1. For every trajectory
coordinate, a ray RTi is drawn, and the trajectory crossings
are determined as above. The ray is then divided into
subsegments based on the trajectory crossings encountered.
The difference ∆k is then determined between the endpoints
of every subsegment, as in Fig 6. If ∆k = 0, that is, the
two endpoints are equal in k-value, then the area is assigned
to be free space. If ∆k = 1, then there must lie exactly
one wall along this subsegment, and an unimodal probability
distribution is assigned, with the wall likely to be at the
midpoint given no other information. Lastly, if ∆k > 1,
more than one wall lies along this line, and a multimodal
distribution is assigned to this segment.

With rays being drawn for every cell along the trajectory,
some rays may “see” a cell that another ray has already seen.
In this instance, the cell would have already been assigned
a probability based on Eq. 5. The probability of the cell is
then updated by combining the probabilities from the prior
ray drawn and the current ray based on each estimation’s
associated uncertainty.

µ =
σ2
1

σ2
1 + σ2

2

µ2 +
σ2
2

σ2
1 + σ2

2

µ1 (5)

where µ is the combined probability, µ1 and µ2 are the
probabilities of the prior ray and the current ray, respectively,
and σ1 and σ2 are the uncertainties associated with the prior



Algorithm 1 Mapping Free Space
1: initialize: Robot position (x, y) ∈ T ,
2: trajectory T ∈M , map Mij ∈ {R2} ∀i, j,Mij ← 127,
3: and router position (a, b) ∈M .
4: while Robot goes to next position (x, y)i ← (x, y)i+1

do
5: Set M(x,y)i ← 0 (free space) [Rule 1].
6: for all (tx, ty) ∈M from (x, y) to (a, b) do
7: Li ← PRSSI from (tx, ty) where Li, PRSSI ∈ R.
8: Ki ← f(PRSSI) from (tx, ty) where Ki ∈ R.
9: if Ki = 0, then

10: Li = Li+σ (increase prob. free space) [Rule 2].
11: else if Ki ≥ 1, then
12: Li = Li − σ (increase prob. of walls) [Rule 3].
13: end if
14: if ∃c, d ∈ R such that Kc = Kd and c ≤ d, then
15: for all Li from Lc to Ld do
16: Li = Li + σ (increase prob. free space)
17: [Rule 4].
18: end for
19: end if
20: Update map M by PRSSI of (tx, ty)← Li.
21: end for
22: end while

Fig. 7. Simulated results based on the proposed algorithm. (left): free
space and occupied cells are shown, with the trajectory of the robot in
green. (right): Ground-truth map [30].

ray probability and the current ray probability, respectively.
All these steps are summarized in Alg. 1.

VI. EXPERIMENTAL RESULTS

The following section demonstrates the simulated and real-
world experiment, showcasing the implementation of sparse
inverse k-visibility.

A demonstration of the algorithm was carried out on a
map provided by the HouseExpo dataset [30]. The ground
truth and results are shown in Fig. 7. In this experiment, an
idealized trajectory is drawn around the walls of each room,
and every trajectory coordinate is associated with a k-value
according to its position from the router. One can observe
that free space and walls are approximated in roughly the
same areas as the walls in the ground-truth.

For the real-world experiments, the ground-truth data was
collected using a 360 Laser Distance Sensor (LDS-01), and

Fig. 8. Real-world experimental results: Experiment 1 (top) and Experiment
2 (bottom), showing the ground-truth map using Gmapping (left) and the
proposed WiFi-based map (right). Our proposed method with RSSI-based
mapping detects most of the free space and potential walls with k ≥ 1.

the 2D occupancy grid map was built using Gmapping [31].
The SfW algorithm’s results largely depend on the quality

of the trajectory obtained. Odometry data from the Turtle-
Bot3 was used to obtain x and y coordinates of the robot
for all the points on its trajectory. WiFi signal strength mea-
surements were collected via the terminal to collect signal
strength measurements. We did two different trajectories at
two different locations, demonstrating the effectiveness of
our proposed method in different environments. We assumed
the location of the router is known, though if the location is
unknown, it can be calculated using other algorithms easily.

The first experiment was performed in a location com-
posed of three small rooms with a total area of 15.7 m2.
Fig. 8 (top left) shows the flood-plan of the environment.
The robot was driven in the environment, collecting 3159
RSSI data points. As shown in Fig. 8 (top right), k values
based on the RSSI signal generally captured the free space
and potential wall locations. The part of the trajectory with
k = 0 is highlighted in red, k = 1 in green, and k = 2 in
blue. There were no higher k-values in this experiment.

Due to fluctuations by the RSSI signals and the distance
loss, it failed to correctly detect the area with a k value of
zero and where the distance was very close to the router.
Such trajectories were typically challenging when using
RSSI signals due to the difference between the wall loss
and the distance loss.

The second experiment covered a longer trajectory with
4713 RSSI data points in an area of 34.2 m2. This is
shown in Fig. 8 (bottom row). We assessed that our proposed
method could estimate most of the free space. We are



confident that utilizing the more optimized RSSI signal
would have led to a higher estimation of the k value as well
as the wall prediction.

In both experiments, the robot obtained knowledge of
the free space without exploring all of the free space and
without using sensors such as a camera, radar, or lidar.
This is significant, as it can be used in applications where
conventional camera/radar/lidar is not available.

VII. FUTURE WORK AND CONCLUSIONS

In this paper, we presented a promising research direction
for WiFi-based geometric mapping, which is able to indicate
the approximate structure of indoor environments, notably
the free space. The free space is important for the robot
to plan a path to navigate in unknown environments for
exploration purposes. To the best of our knowledge, there is
no such research developing a geometric map using a WiFi
signal without relying on crowdsourcing or exteroceptive
sensors such as a camera, radar, or lidar.

In the future, the work should explore machine learning
methods that can improve the quality of the map obtained
in a post-processing step. The integration of WiFi-based
localization methods, which provide highly accurate trajecto-
ries, should also be integrated with the WiFi-based mapping
method presented in this work to create an entirely inde-
pendent end-to-end WiFiSLAM system. Actively planning a
trajectory to improve the map quality will be pursued.
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