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#Junseo Kim 

Assignment 3 
 

Summer 2023 
 

1 Particle Filter (Linear model) 

Use pyGame, or any other similar libraries, to simulate a simplified 2D robot and perform state 

estimation using a Kalman Filter. Motion Model: 

 

r = 0.1 m, is the radius of the wheel, ur and ul are control signals applied to the right and left 

wheels. wx = N (0, 0.1) and wy = N (0, 0.15) 

Simulate the system such that the robot is driven 1 m to the right. Assume the speed of each 

wheel is fixed and is 0.1 m/s 

Use these initial values 

 

and assume the motion model is computed 8 times a second. Assume every second a 

measurement is given: 

 

 

where rx = N (0, 0.05) rx = N (0, 0.075) 

Initialization 

For the particle filter algorithms, particles each representing a possible state are set in the 

algorithm. Each particle is then assigned with initial weight. 

[2] 

Prediction 

Particles move based on the control input and the motion model as given in the requirement. 

The motion model will include noise to account for the uncertainties in the system. 

[2] 

Correction 
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Each particle is then updated based on how they predicted well compared to the actual 

measurement. This is calculated with the likelihood (Gaussian). Particles with better prediction 

will get a higher weight. 

[2] 

Resampling 

Once the weights are updated, particles are resampled. This is done for each particle 

proportional to its weight which also means that particles with higher weights are more likely to 

be resampled.  

[2] 

Estimation 

The new state of the system is then estimated with the average of the weighted particles.  

 

Figure 1: Particle Filter Algorithm [1] 

 

Figure 2: Particle Filter with the linear measurement model 

 



3  

In Figure 2, the red line represents the estimated states with particles and the blue line represents 

the true state of the system.  

The true state is updated in the ‘simulate_observation’ function from the code and the noise is 

added to simulate the real-world conditions 

The estimated state of the system is based on the observations and control inputs. The estimated 

state is updated in the ‘particle_filter_localization’ function from the code. The particles are moved 

based on the control inputs and then weighted based on how they predict the observations. 

In the simulation, only 100 particles were used. Even though the particle filter is not the best 

solution to solve the linear measurement model, the accuracy of the particle filter will increase with 

the increase in the number of particles and decreasing the amount of noise. 

For this linear measurement model, Gaussian distribution is used as the likelihood function in the 

particle filter. 

𝑓(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎2
exp (−

(𝑥 − 𝜇)2

2𝜎2
) 

Where 𝜇 is the mean and 𝑏 is the standard deviation. 

In the resampling process, a large number of particles are drawn from this distribution. Due to the 

central limit theorem, random variables tend towards a Gaussian distribution regardless of the 

shape of the original distribution. 

However, other distributions can be used for the likelihood function. For part 2 using the non-linear 

model, double exponential distribution (Laplace distribution) is used to deal with the Non-gaussian 

model. 

Detailed Codes can be found at 
https://github.com/JunseoKim19/State_estimation/blob/main/Particle_Filter_taska.py 

 
Full simulation can be found at 

https://youtu.be/3Md9g_VARHo 
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2 Particle Filter (Non-linear model) 

Repeat the previous assignment, this time with a classic motion model and range observations made 

from a landmark located at M = [10,10]. L is the distance between the wheel, known as wheelbase, 

and is 0.3m. 

 

Assume 

 
 

Then the equations become: 

 

 

wψ = N (0, 0.01) and wω = N (0, 0.1). Program the robot such that it loops 
around point M. 

 
The main difference from Part 1 is the system model, and control inputs because a non-linear model 

is applied to the system. For a non-linear model system, new control input: yaw rate is applied to 

the system.  

 

The observation model will, therefore, involve the distance and angle measurement from the 

landmark to the robot’s position and orientation. 

 

In terms of the noise, as the non-linear model is applied, noise should be included in both velocity 

and yaw rate for accurate estimation. 
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Figure 3: Particle Filter for the non-linear model 

 

From Figure 3, the ground state (blue line) is hidden under the estimated state (red line) and is not 

visible through the simulation. 

As for the likelihood, double exponential distribution (Laplace distribution) was used for the system 

𝑓(𝑥|𝜇, 𝑏) =
1

2𝑏
𝑒𝑥𝑝 (−

|𝑥 − 𝜇|

𝑏
) 

Where 𝜇 is the mean and 𝑏 is the standard deviation. 

 

Compared to the Gaussian distribution, the Laplace distribution will give more likelihood to larger 

deviations from the mean and will be more concentrated around the mean. 

 

However, after running the simulation the difference between two likelihood functions were 

minimal. 

 

The detailed process of the particle filter implementation is described in Part 1. 

Detailed Codes can be found at 
https://github.com/JunseoKim19/State_estimation/blob/main/Particle_Filt

er_taskb.py 

 
Full simulation can be found at 

https://youtu.be/S6kPBNh-YTk 
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