Assignment I

Summer 2023

1 Question 1

\mathbf{x} is a random variable of length K :

$$
\mathbf{x}=N(\mathbf{o}, \mathbf{1})
$$

a) What type of random variable is the following random variable?

$$
\mathbf{y}=\mathbf{x}^{\top} \mathbf{X} .
$$

This is chi-squared (of order K) random variable because this is sum of independent standard normal random variables.
b) Calculate the mean and variance of \mathbf{y}. Mean : K, Variance : 2 K

$$
\begin{gathered}
E[X]=\int_{0}^{\infty} x f X(x) d x=\int_{0}^{\infty} x c x^{\frac{n}{2}-1} \exp \left(-\frac{1}{2} x\right) d x=c \int_{0}^{\infty} x^{\frac{n}{2}} \exp \left(-\frac{1}{2} x\right) d x=c\left\{\left[-x^{\frac{n}{2}} 2 \exp \left(-\frac{1}{2} x\right)\right]_{0}^{\infty}+\right. \\
\left.\int_{0}^{\infty} \frac{n}{2} x^{\frac{n}{2}-1} 2 \exp \left(-\frac{1}{2} x\right) d x\right\}=c\left\{(0-0)+n \int_{0}^{\infty} x^{\frac{n}{2}-1} \exp \left(-\frac{1}{2} x\right) d x\right\}=n \int_{0}^{\infty} c x^{\frac{n}{2}-1} \exp \left(-\frac{1}{2} x\right) d x=n \int_{0}^{\infty} f X(x) d x=n \\
E\left[X^{2}\right]=\int_{0}^{\infty} x^{2} f X(x) d x=\int_{0}^{\infty} x^{2} c x^{\frac{n}{2}-1} \exp \left(-\frac{1}{2} x\right) d x=c \int_{0}^{\infty} x^{\frac{n}{2}+1} \exp \left(-\frac{1}{2} x\right) d x=c\left\{\left[-x^{\frac{n}{2}+1} 2 \exp \left(-\frac{1}{2} x\right)\right]_{0}^{\infty}+\right. \\
\left.\int_{0}^{\infty}\left(\frac{n}{2}+1\right) x^{\frac{n}{2}} 2 \exp \left(-\frac{1}{2} x\right) d x\right\}=c\left\{(0-0)+(n+2) \int_{0}^{\infty} x^{\frac{n}{2}} \exp \left(-\frac{1}{2} x\right) d x\right\}=c(n+2)\left\{\int_{0}^{\infty} x^{\frac{n}{2}} \exp \left(-\frac{1}{2} x\right) d x\right\} \\
c(n+2)\left\{\left[-x^{\frac{n}{2}} 2 \exp \left(-\frac{1}{2} x\right)\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{n}{2} x^{\frac{n}{2}-1} 2 \exp \left(-\frac{1}{2} x\right) d x\right\}=c(n=2)\left\{(0-0)+n \int_{0}^{\infty} x^{\frac{n}{2}-1} \exp \left(-\frac{1}{2} x\right) d x\right\} \\
(n+2) n \int_{0}^{\infty} c x^{\frac{n}{2}-1} \exp \left(-\frac{1}{2} x\right) d x=(n+2) n \int_{0}^{\infty} f X(x) d x=(n+2) n \\
\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=(n+2) n-n^{2}=n(n+2-2)=2 n
\end{gathered}
$$

c) Using Python, plot the PDF of \mathbf{y} for $\mathrm{K}=1,2,3,10,100$.

Figure 1: PDF of chi-squared distribution
Detailed Code source can be obtained from
https://github.com/JunseoKim19/State_estimation/plob/main/Probability_Density_Function_chi-square.py

2 Question 2

\mathbf{x} is a random variable of length N :

$$
\mathbf{x}=N(\mu, \mathbf{\Sigma})
$$

a) Assume \mathbf{x} is transformed linearly, i.e. $\mathbf{y}=\mathbf{A x}$, where \mathbf{A} is an $N \mathrm{x} N$ matrix. Calculate the mean and covariance of \mathbf{y}. Show the derivations. Mean: $\boldsymbol{A} \boldsymbol{\mu}$, Covariance: $\boldsymbol{A} \boldsymbol{\Sigma} \mathbf{A}^{\mathbf{T}}$

$$
\begin{gathered}
E[y]=E[A x]=A E[x], E[x]=\mu, E[y]=A \mu \\
\operatorname{cov}[y]=E\left[(y-E[y])(y-E[y])^{T}\right]=E\left[(A x-A \mu)(A x-A \mu)^{T}\right]=A E\left[(x-\mu)(x-\mu)^{T}\right] A^{T} \\
\operatorname{cov}[y]=A \Sigma A^{T}
\end{gathered}
$$

b) Repeat a), when $\mathbf{y}=\mathbf{A}_{1} \mathbf{x}+\mathbf{A}_{2} \mathbf{x}$. Mean: $\boldsymbol{A}_{1} \boldsymbol{\mu}+\boldsymbol{A}_{2} \boldsymbol{\mu}$, Covariance: $\boldsymbol{A}_{\mathbf{1}} \boldsymbol{\Sigma} \boldsymbol{A}_{1}^{T}+\boldsymbol{A}_{\mathbf{2}} \boldsymbol{\Sigma} \boldsymbol{A}_{2}^{T}$

$$
\begin{gathered}
E[y]=E\left[A_{1} x+A_{2} x\right]=A_{1} E[x]+A_{2} E[x]=A_{1} \mu+A_{2} \mu \\
\operatorname{cov}[y]=A_{1} E\left[(x-\mu)(x-\mu)^{T}\right] A_{1}^{T}+A_{2} E\left[(x-\mu)(x-\mu)^{T}\right] A_{2}^{T}=A_{1} \Sigma A_{1}^{T}+A_{2} \Sigma A_{2}^{T}
\end{gathered}
$$

c) If \mathbf{x} is transformed by a nonlinear differentiable function, i.e. $\mathbf{y}=\mathbf{f}(\mathbf{x})$,compute the covariance matrix of \mathbf{y}. Show the derivation

Using Taylor expansion of the function $f(x)$, and Jacobian matrix of f evaluated at μ

$$
\begin{gathered}
f(x)=f(\mu)+J_{f}(\mu)(x-\mu) \\
E[y]=E[f(x)]=f(\mu) \\
\operatorname{cov}[y]=E\left[\left(f(\mu)+J_{f}(\mu)(x-\mu)-f(\mu)\right)\left(f(\mu)+J_{f}(\mu)(x-\mu)-f(\mu)^{T}\right]=J_{f}(\mu) \Sigma J_{f}(\mu)^{T}\right.
\end{gathered}
$$

d) Apply c) when

$$
\begin{aligned}
& x=\left[\begin{array}{c}
\rho \\
\theta
\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\boldsymbol{\sigma}^{2}{ }_{\boldsymbol{\rho}} \boldsymbol{\rho} & \boldsymbol{\sigma}^{2}{ }_{\boldsymbol{\rho} \theta \theta} \\
\boldsymbol{\sigma}^{\boldsymbol{2}}{ }_{\boldsymbol{\rho} \boldsymbol{\theta}} & \boldsymbol{\sigma}^{\mathbf{2}}{ }_{\theta \theta}
\end{array}\right] \text {, and } y=\left[\begin{array}{c}
\rho \cos \theta \\
\rho \sin \theta
\end{array}\right] . \\
& f(x)=\left[\begin{array}{c}
\rho \cos \theta \\
\rho \sin \theta
\end{array}\right], J_{f}(x)=\left[\begin{array}{ll}
\frac{\vartheta(\rho \cos \theta)}{\vartheta \rho} & \frac{\vartheta(\rho \cos \theta)}{\vartheta \theta} \\
\frac{\vartheta(\rho \sin \theta)}{\vartheta \rho} & \frac{\vartheta(\rho \sin \theta)}{\vartheta \theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\rho \sin \theta \\
\sin \theta & \rho \cos \theta
\end{array}\right] \\
& \operatorname{cov}[y]=\left[\begin{array}{cc}
\cos \theta & -\rho \sin \theta \\
\sin \theta & \rho \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\sigma}^{\mathbf{2}} \boldsymbol{\rho} \boldsymbol{\rho} & \boldsymbol{\sigma}^{2} \boldsymbol{\rho \theta} \\
\boldsymbol{\sigma}^{2}{ }_{\boldsymbol{\rho} \boldsymbol{\theta}} & \boldsymbol{\sigma}^{\mathbf{2}}{ }_{\boldsymbol{\theta} \boldsymbol{\theta}}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\rho \sin \theta & \rho \cos \theta
\end{array}\right]
\end{aligned}
$$

Compute the covariance of \mathbf{y} analytically. This models how range-bearing measurements in the polar coordinate frame are converted to a Cartesiancoordinate frame.
e) Simulate d) using the Monte Carlo simulation, i.e. assume

$$
x=\left[\begin{array}{c}
1 m \\
0.5^{\circ}
\end{array}\right], \Sigma=\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.005
\end{array}\right]
$$

Sample 1000 points from this distribution and plot the transformed results on x-y coordinates. Plot the uncertainty ellipse, calculated from part d). Overlay the ellipse on the point samples.

Figure 2: Monte Carlo simulation Case 1
f) Repeat part e), for the following values:

$$
x=\left[\begin{array}{c}
1 m \\
0.5^{\circ}
\end{array}\right], \Sigma=\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.005
\end{array}\right]-\text { Refer to Figure } 2
$$

$$
x=\left[\begin{array}{c}
1 m \\
0.5^{\circ}
\end{array}\right], \Sigma=\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.1
\end{array}\right]
$$

Figure 3: Monte Carlo simulation Case2

$$
x=\left[\begin{array}{c}
1 m \\
0.5^{\circ}
\end{array}\right], \Sigma=\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.5
\end{array}\right]
$$

Figure 4: Monte Carlo simulation Case3

Figure 5: Monte Carlo simulation Case4

Interpretation:

Each figure is scatter plot of points in the $x-y$ plane which are transformed from the polar coordinates to Cartesian coordinates. Looking from figures 2 to 5 , the variance of the angle variable increases. As the angle variable increases, the points will spread out in the y-direction because y-coordinate in cartesian coordinates is represented as $\rho \sin \theta$.
As shown in the figures, the points in the plot is spreading more in the y-direction

There is another major difference in the uncertainty ellipses. As the covariance matrix changes and the variance of the angle variable increases from figure 2 to figure 5, the uncertainty in the y-direction will increase. This will lead to bigger and taller uncertainty ellipses as the angle variable increases

Detailed Code source can be obtained from
https://github.com/JunseoKim19/State_estimation/blob/main/MonteCarlo_Simulation_Cartesian.py

